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ABSTRACT

A time dependent finite difference technique was used to compute the
flow field in a nozzle throat region. Steady state results are obtained
as an asymptotic solution in time. This report describes the finite
difference solution and presents comparisons with both experimental data

and the theoretical work of Sims (Ref. 3).
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LIST OF SYMBOLS
Cylindrical coordinates parallel and perpendicular to the nozzle
symmetry axis, respectively
Coordinates defined by equation (9)
r coordinate of nozzle wall
Non-dimensional density
Non-dimensional pressure
Non-dimensional velocity

Components of V in the x, r directions, respectively

Variables defined by equations (5)

Ratio of specific heats

Flow direction angle measured with respect to the symmetry axis
Mass flow

Cross sectional area of nozzle

Non-dimensional sound speed

Dimensional sound speed

Non-dimensional time

Mach number

Refers to critical wvalues



SUMMARY

A method was developed to compute the entire flow field in the throat
region of a converging-diverging nozzle. The time-dependent equations
describing the flow of an inviscid, ideal, non-heat-conducting gas were
solved by a numerical finite difference technique described by Thommen
(Ref. 5). Steady state results are obtained as an asymptotic solution of
the time dependent equations of motion.

A FORTRAN program was written for the CDC 3200 digital computer and
two check cases were run. The first case was compared with the solutions
of Sims (Ref. 3) and the second was compared with experimental data (Ref. 6).

Comparison with experimental data was excellent.



INTRODUCTION

Regions of mixed subsonic-supersonic flow have generally escaped accurate
theoretical analysis due mainly to the mixed nature of the governing differen-
tial equations; the equations being elliptic, parabolic, and hyperbolic in the
subsonic, sonic, and supersonic portions of the flow, respectively. In super-
sonic flow, the well known method of characteristics provides a fast, accurate
method of attack provided that an initial data line is known. This then, is the
goal of most transonic flow solutions. That is, to compute the subsonic portion
of the field, through the sonic transition region, and far enough downstream of
the sonic line to provide an accurate, supersonic initial data line for continu-~
ation of the flow calculation by the method of characteristics.

A classic example of the mixed flow problem is in the throat region of a
nozzle (Fig. 1). In earlier works, the problem was attacked by series expansion
of the equation for the potential function. Coefficients of the series were
then obtained by some type of numerical analysis, such as the iterative proce-
dure devised by Oswatitsh and Rothstein (Ref. 1). Unfortunately, the iteration
requires numerical differentiation, and the procedure is unstable due to the
elliptic nature of the flow equations. If the nozzle throat is of small radius
of curvature, several iterations may be required with possibly disastrous

results.



NOZZLE WALL

SUBSONIC
REGION

SUPERSONIC

SONIC REGION

LINE

NOZZLE CENTER LINE

GENERAL DESCRIPTION OF FLOW FIELD
FIG. |



Another solution is that of Sauer (Ref. 2) which is a series expansion
about the critical line. Sauer's method contains only two terms of the
series and should be used only for nozzles with large radii of curvature at
the throat wall.

In reference 3, Sims extended the method of Sauer by adding more terms
to the series expansion. This should provide more accurate results, especially
for a throat with small radius of curvature. Addition of more terms to the
series presents a most laborious task, however, and it is quite clear from Sims'
results that the series is not yet closed for nozzles having very small radii
of curvature.

Since instability is a major drawback to most numerical solutions of the
elliptic flow equations, a solution is posed here which circumvents the basic
instability problems.

The basic idea is to numerically integrate the time dependent flow equations,
imposing steady state boundary conditions at the wall, and obtaining a steady
state solution asymptotically with increasing time. The differential equations
describing the flow are replaced by finite difference equations and integrated
with respect to time. This scheme was shown to be at least conditionally stable
(see Refs. 4, 5) and is of second order accuracy.

In this study the gas was assumed to be ideal, inviscid, and non heat-con-
ducting. Also, this program applies only to smooth nozzles; i.e. there can be
no discontinuities in the wall slope. The flow is axisymmetric or two dimen-

sional.
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THEORY & EQUATIONS

The equations governing the axisymmetric flow are given with respect to
a cylindrical coordinate system x, r, ¢ as follows:
W, =F, +G. +H ()

Where W, F, G and H are the column vectors

Pr =Pur -Pvr 0

pPur -Puzr - Pr -Puyr 0

W= Pvr F= -Puvr G = -Pvir - Pr H = P
' Er -u[E+P]r v[E+P]r 0

The subscripts t, x, r denote partial differentiation, and
E=§%—f P + 3Py2
Where P is the density, P the pressure, V is the velocity of the gas, u
and v are the components of V in the x, r directions respectively, and Y is
the ratio of specific heats.
All lengths are made dimensionless by the r coordinate of the wall at the

throat. TFlow parameters are non-dimensionalized by

P ' '
Pe= o . =V
* P T YP* v a%*

where the primes denote dimensional quantities and the asterisk (*) refers
to the sonic values.

The above equations are written for axisymmetric flow. Two dimensional
flow equations are obtained by replacing r by r€, where

0 for two-dimensional flow
1 for axisymmetric flow

The vector H for two-dimensional flow is identically zero.



COMPUTATION SCHEME

Assuming that W is known over the entire flow field considered at t = tg,,

then a truncated Taylor series in t yields

W(t, +At) = W(t,) + WAt +Wee %2 + 0(atd) (2)
Let W at any point in the field be denoted by wmln

where
t = 1At X = nAX r = mAr

Then W_ can be evaluated at (1, m, n) by replacing equation (1) with the

difference analog

1 1. - 1 ! L
R yel Rt Fm%n-ll Yo [Gm-l-l,n " Gnil,n] * Ho,n )

The value of W¢t may be computed by differentiating equation (1).

Wee = Fop + Gpp + He (4)
Now
W1 = pr Fl = 'W2 Gl = -W3
2
Wy = Pur F, = | W2 + Pr] G, = -W2W3
Wy W
W, = Pyr F, = WoW3 Ga= - "3 + pr (5)
3 3 - == 3 ==
i1 L)1
= ) - W
W, = Er Fy w—2 s + 2} 6, = -23 [y + Pr)
1 W
Pr = (Y-1) |w, - % W22+ W32]

W1
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éf_i = ai’j a_w.l
ot ot
0G; AW
Ci =py,; i
9t ﬁl"] ot
8Hi = 6i,j 8Wj
at at

where repeated subscripts, (j), require summation over that subscript,

and !
., . _ OF; . 9Gj OH; [

oi,j = —L ﬁ s = VL PR i i

J aWj 1,) aWj 6i,] a———wj ;

oW
The derivative 5El-may be evaluated as in equation (3). Finally, the

second order term, Wi., is evaluated with a finite difference analog of

Wep = - (Q_E)+ _3_(@@)+ oH
ot dr \ot ot

This scheme requires the evaluation of the Jacobians @i.3, Bi,j, 51,j
and subsequent matrix multiplication at each point.

A simpler scheme of equal accuracy as outlined by Thommen (Ref. 5) was

used for the present program. The finite difference equations and computing

sequence are outlined as follows:
(Step 1) Compute Wat (L+%, m+ %, n+ %) and (L + %, m,n) from the
difference analog of equation (1)

W(l+% m+*t %, n)-=

{
o

[W(l,man) + W(l,m+ l’n)]

-+

A_;{ Zi.; [Flm+ 1,n +1) -F(l,m + 1, n-1)

-+

F(l,m,n + 1) ~F(l,m,n - 1)]15-1- [c,m + 1,n)
X

¢(1,m,n)] + % [H(L,m £ 1,n) + H(L,m,n]} (6)



Wl +%mmnt%) =3WQ,m,n) +Wl,m,n + 1)]

A
+ ——‘2-:- {:l:g}l? [F(1,myn + 1) -F(1,m,n)]
1

[GAlm+1,n+1) -G(Ll,m - 1,n + 1)

+

+G6(1,m+ 1,n) -6G(L,m - 1,n)] + % [H(1,m,n + 1)
+ H(1l,m,n)]} (7)
W( + %,m,n) = % [W(,m,n - 1) +W(l_,m,n + 1) +Wwl,m + 1,n)
+W(Lm - L,m)] + 48 [ [F(mn +1) -F(,mn - 1)

+-1 [e@d,m+1,n) -G(1,m -1,n)] + H(l,m,n)]} (8)
2A8r

(Step 2) Compute F(1 + 5,m,n + %), G(1 + 5,m + %,n), H(L + %,m,n)
from the W computed in equations (6) - (8), referring to the algebraic forms
of W, F, G and H in equation (5).

(Step 3) Finally, compute W(l + 1,m,n) with W, centered at (t + At, m, n)

from

Wl + 1,myn) = W(l,m,n) +At{A—-}]:- [F(l + %,m,n + %) -F(1L + %,m,n - ;é)]

+.L [6(1 + %m+ 1,n) -G(1 +%,m - 1,n)]
ar 2 2
+ H(l + I/Z’m’n)}




COORDINATE CHANGE

The above equations were derived for a cylindrical coordinate system.
In order to obtain a grid with equal mesh size in the r direction at the
wall, a slight change of coordinates was made.

Let s = s(x) be a function describing the wall boundary, then the co-

ordinate change was made as follows.

-YS Py+lg +n

where the prime denotes differentiation with respect to x. Although the
basic equations have become slightly more complicated due to the coordinate
change, the advantage gained is considerable,

It is easily seen that the logic required in a computer program is
considerably reduced using the X, Y coordinate system. A more important
consideration, however, lies in the possibility of local instabilities in
the finite difference scheme if the mesh size at the wall should be much

smaller than the standard mesh. In the X, Y coordinate system, a constant

value of AY can be maintained throughout the entire field.
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BOUNDARY CONDITIONS

Wall Boundary
Let m = M denote the nozzle wall boundary. Assuming that for any n, the
points M - 1, M - 2, M - 3 have been computed, the wall point is computed as
follows.

Using the three preceding points M - 1, M - 2, and M - 3, extrapolate

Wl’ W4, and P to m = M.
Evaluate V from
SETCRE 1k
W Y-1
Then
W2 = le Cose
W3 = W1V Sine Where ¢ = tan™! (s')
A second order extrapolation equation for a general function Z is:
Iy =3y o1 "%y - 0) T2y -3
Axis Boundary
For axis symmetric flow, the axis boundary conditions are quite simple.
Since W; = Pr W3 = Pvr

Wy = Pur W, = Er
then W; = 0 for i = 1, 2, 3, 4, The pressure, P, at the axis is determined
as follows.
Evaluate Pr at all points in the field m = 2, -- M at any M from

2 2
Pr = (Y - 1) w4-15wz + Ws
Wy
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Of course Pr = 0 at the axis, so that it is necessary to interpolate P
from points off the axis. The pressure at points below the axis are reflected
from corresponding points above the axis in order to utilize a centered inter-
polation formula.

Let the x - axis be denoted by m = 1. Then an interpolation formula for

any function Z yields:

Z (1) =1/3 |42 (2) - Z (3)
For two-dimensional flow, a different procedure is used at the axis.
Here, use is made of the flow symmetry about the x - axis. The axis is de-
signated by m = 2, and the line m = 1 is a mirror image of the line m = 3.

For the Wi atm=1

W, (L,7,n) =W, (1,3,n)
Wy (L,1,m) =W, (1,3,n)
Wy (1,1,n) = Wy (1,3,n)
W, (1,',n) =W, (1,3,n)

The axis points are computed with the same general procedure as regular

flow field points.
Downs tream Boundary

A coordinate line x = constant at n = N is chosen as the downstream boun-
dary several grid stations downstream of the sonic line. No errors generated
along this line can be propagated upstream from this line due to the principal
of forbidden signals. A linear extrapolation is therefore sufficient to obtain
flow properties at the downstream boundary. The extrapolation equation used in

the present program is

for any function Z.
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Upstream Boundary

To insure good upstream boundary conditions, the inlet to the nozzle
is assumed to be a straight pipe of sufficient length that the flow may
be considered uniform in the straight section of the nozzle at some station
n=1,

Supersonic flow is established downstream of the throat by insuring
that the mass flow Q at n = 1 is equal to the critical mass flow.

Let A = cross sectional area of the nozzle, then

Q = (P'u'A), = Pra*A*
At each time step, the mass flow is numerically integrated across the

throat section.

SNT

= = % =
Q 2nfo Wydr = A% W, = (Pur)_ _ .o

So that the area ratio, AR, is computed from

S
AR L ngd A%
= r =5
812 o 2 Aqp

The flow pfoperties at n = 1 are computed from one-dimensional area
ratio equations and
Wl = Pr W3 =0
W

1]

pV W =
2 11° s " Er
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LOCAL FLOW PARAMETERS

The variables W; are used in the program to simplify the computation

scheme. ZLocal flow properties may be computed with the following equations.

S T
re W1 W
2 2 2 2
v2 Wo® + Wy _ Y- 1 W - & W, + w3
.2 r€ 4 2
Wy Wy

o= tan™! W3
W2

For_axis-symmetric flow, Wl = W2 =Wy =Wy = 0 at the axis. Flow para-
meters on the axis must be computed by interpolating from points off the axis,

as was done for P in the axis boundary calculatioms.

STABILITY
It was mentioned earlier that the finite difference scheme presented here
is conditionally stable. A linear analysis was performed by a number of investi-
gators to establish a stability criterion for this type of technique. In parti-
cular, Burstein (Ref. 4) shows a '"safe' step size relative to local flow condi-

tions to be given by

At o M+ 1)
A c /8

where
M = local Mach number
¢ = local speed of sound
A = gpacial mesh size
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This stability criterion was followed in the present work, the step
size At being computed initially based on sonic flow and kept constant

throughout the entire run.

RESULTS
This problem was programmed for the CDC 3200 digital computer, and
two test cases have been run. Figure 5 is a sketch of the nozzle indica-

ting the final sonic line position for the first case.

The initial data at t = 0 for this case was computed from one-dimensional

area ratio equations, and a record was kept at each time step of the value
of W, at the throat wall position. After about 450 time steps, W) at this
point was damped to within ,057% of the final value (Fig. 6). The mesh size
for this run was M x N = 11 x 23 points.

Comparison of the sonic line position measured from the x-coordinate of
the throat with that computed by Sims (Ref. 3) yields agreement of about 2%
at the nozzle axis and 60% at the nozzle wall, Little explanation can be
given by the author for the relatively poor agreement at the wall., It may
be pointed out, however, that Sims' work, which is an extension of Sauer's
series expansion method, is based on the velocity gradient on the nozzle
center line at the sonic point. It seems likely that the two methods should
agree better at the intersection of the sonic line and symmetry axis.

Figure 8 shows the comparison of the second case with the experimental
data of reference 6. Agreement is quite good, especially in the vicinity of

the sonic line.
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CONCLUSTION

The time dependent finite difference technique is a relatively simple,
straightforward method of solution for the nozzle throat problem. Restric-
tions on the flow equations are not severe and could be relaxed in various
ways. It is possible, in principle, to add the viscosity terms and some
real gas effects. As a matter of fact, Thommen (Ref. 5) has computed the
viscous flow field for a straight wall. Of course the mesh size must be
considerably reduced near the wall, which in turn increases computer run
time. With the present mesh, the program computes about ten time steps per
minute.

As the program is now written, it can handle only axisymmetric flow.
It is a simple matter to incorporate an option to compute two dimensional

flow, and this will be done in the near future.
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